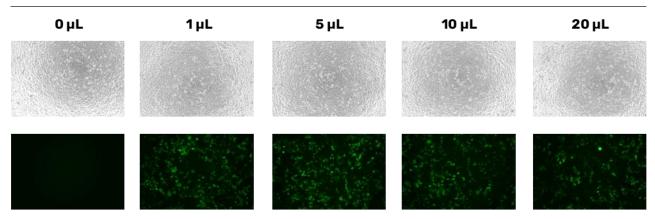


Pseudovirus Ebola Zaire (GFP)

Lot #PsV-EBZGF-0100

Quality control report

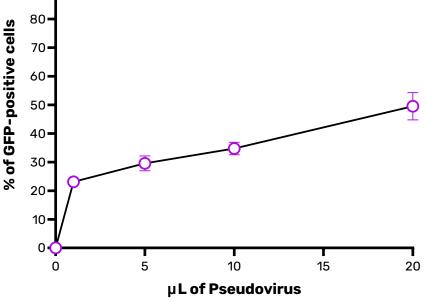

1. Summary

The lot number #PsV-EBZGF-0100 is a lentivirus-based pseudovirus pseutotyped with the glycoprotein of the Ebola Zaire variant. This quality control report demonstrates that the lot #PsV-EBZGF-0100 is efficient for cell transduction and can be effectively neutralized by a standard neutralizing antibody.

2. Transduction efficiency assay

Target cells	HEK293 cells (TIM-1+)
Volume of pseudovirus	0, 1, 5, 10, 20 µL/well
Detection signal	Fluorescence (GFP)
Detection method	Fluorescent microscopy

Volume of pseudovirus

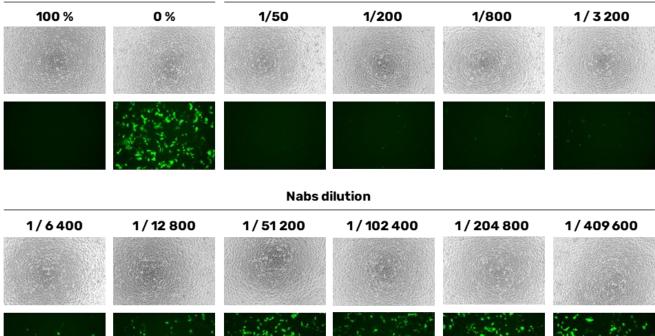

Figure 1: Ebola Zaire pseudovirus transduction efficiency.

A volume range of pseudovirus was mixed in a final volume of 50 µL of culture complete medium, in a 96-well plate. Then, an additional 50 µL containing 20 000 HEK293 cells (TIM-1⁺) was seeded in each well. GFP expression analysis was performed 48 hours post-infection by fluorescent microscopy. Microscopy parameters: objectif x20, exposure time 200 ms, instrument Leica DMIL LED Fluorescent

Lot #PsV-EBZGF-0100 Quality control report

Target cells	HEK293 cells (TIM-1 ⁺)
Volume of pseudovirus	0, 1, 5, 10 or 20 µL/well
Detection signal	Fluorescence (GFP)
Detection method	Flow cytometry
¹⁰⁰ 7	
90-	

Figure 2: Ebola Zaire pseudovirus transduction efficiency curve.


A volume range of pseudovirus was mixed in a final volume of 50 μL of culture complete medium, in a 96-well plate. Then, an additional 50 μL containing 20 000 HEK293 cells (TIM-1⁺) was seeded in each well. GFP expression analysis was performed 48 hours post-infection by flow cytometry analysis (at least 10⁴ cells).

Conclusion	The GFP Ebola Zaire pseudovirus (#PsV-EBZGF-0100) can transduce
	the target cells.

3. Neutralization assay

Target cells	HEK293 cells (TIM-1 ⁺)
Volume of pseudovirus	5 μL/well
Neutralizing antibody (Nabs)	Anti-Ebola surface glycoprotein[KZ52], <u>AB00690-10.0</u>
Detection signal	Fluorescence (GFP)
Detection method	Fluorescent microscopy
Neutralization control	Nabs dilution

Figure 3: Ebola Zaire pseudovirus neutralization assay.

A monoclonal neutralizing antibody (AB00690-10.0) at 1 μ g/ μ L was serial diluted in a final volume of 50 μ L of complete medium and incubated for 1 hour at 37 °C, with 5 μ L of pseudovirus, in a 96-well plate. Then, an additional 50 μ L containing 20 000 HEK293 cells (TIM-1⁺) was seeded in each well and incubated for 48 hours before microscopy analysis. Microscopy parameters: objectif x20, exposure time 900 ms, instrument Leica DMIL LED Fluorescent.

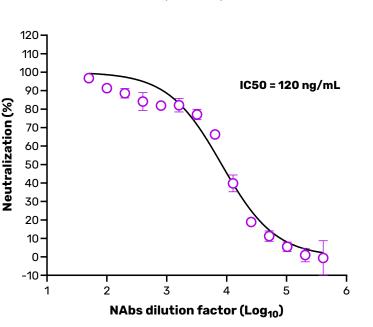
Pseudovirus Ebola Zaire (GFP)

Lot #PsV-EBZGF-0100 Quality control report

Target cells

HEK293 cells (TIM-1+)

Volume of pseudovirus


5 μL/well

Anti-Ebola surface glycoprotein[KZ52], <u>AB00690-10.0</u>

Neutralizing antibody (Nabs)

Detection signal

Detection method

Fluorescence (GFP)

Flow cytometry

Figure 4 : Neutralization curve.

A monoclonal neutralizing antibody (AB00690-10.0) at 1 μ g/ μ L was serial diluted in a final volume of 50 μ L of complete medium and incubated for 1 hour at 37 °C, with 5 μ L of pseudovirus, in a 96-well plate. Then, an additional 50 μ L containing 20 000 HEK293 cells (TIM-1⁺) was seeded in each well and incubated for 48 hours before flow cytometry analysis (at least 10⁴ cells). Raw data in percentage of GFP-positive cells were analyzed using a log(inhibitor) *vs* normalized-response (variable slope) non-linear regression model in Prism v10 (GraphPad). Percentages of neutralization were normalized considering only cells into wells as 100% neutralization and cells transduced by pseudoviruses without any NAbs as 0% neutralization. Data are representative of duplicates.

Conclusion The GFP Ebola Zaire pseudovirus #PsV-EBZGF-0100 can be efficiently neutralized by neutralizing antibodies.

3. Additional information

Caution	We recommend determining the optimal pseudovirus volume to use according to your specific experimental conditions.
Pseudovirus	3 rd generation, replication incompetent
Pseudotyping	Ebola virus glycoprotein from the 2014 outbreak in west Africa (GENBANK : <u>KP096420.1</u>)
Glycosylation origin	Human
Reporter protein	Green fluorescent protein
Storage	- 80 °C, avoid freeze/thaw cycles
For more information	<u>mathias.mangion@ivanobioscience.com</u> Message object should contain : "#PsV-EBZGF-0100"