

Pseudovirus Ebola Zaire (luciferase) Lot #PsV-EBZLU-0100

Quality control report

1. Summary

The lot number #PsV-EBZLU-0100 is a lentivirus-based pseudovirus pseutotyped with the glycoprotein of the Ebola Zaire variant. This quality control report demonstrates that the lot #PsV-EBZLU-0100 is efficient for cell transduction and can be effectively neutralized by a standard neutralizing antibody.

2. Transduction efficiency assay

Target cells	HEK293 cells (TIM-1+)
Volume of pseudovirus	0, 1, 5, 10, 20, 30 or 40 µL/well
Detection signal	Luminescence (firefly luciferase)
Detection method	Microplate reader

Figure 1: Transduction efficiency curve.

A volume range of pseudovirus was mixed in a final volume of 50 μ L of culture complete medium, in a 96-well plate. Then, an additional 50 μ L containing 20 000 HEK293 cells (TIM-1⁺) was seeded in each well. Luc expression analysis was performed 48 hours post-infection by a luminescence microplate reader.

Conclusion	The Luc Ebola Zaire pseudovirus (#PsV-EBZLU-0100) can transduce
Conclusion	the target cells.

Figure 2: Neutralization curve.

A monoclonal neutralizing antibody (AB00690-10.0) at 1 μ g/ μ L was serial diluted in a final volume of 50 μ L of complete medium and incubated for 1 hour at 37 °C, with 1 μ L of pseudovirus, in a 96-well plate. Then, an additional 50 μ L containing 20 000 HEK293 cells (TIM-1⁺) was seeded in each well and incubated for 48 hours. Finally, an additional 100 μ L of Bright-GloTM Luciferase buffer was added in each well and incubated for 2 minutes. Data in relative unit luminescence (RLU) were obtained from the analysis of 150 μ L of the cell lysate with a microplate reader. Raw data were analyzed using a log(inhibitor) *vs* normalized-response (variable slope) non-linear regression model in Prism v10 (GraphPad). Percentages of neutralization were normalized considering only cells into wells as 100% neutralization and cells transduced by pseudoviruses without any NAbs as 0% neutralization. Data are representative of duplicates.

Conclusion The Luc Ebola Zaire pseudovirus #PsV-EBZLU-0100 can be efficiently neutralized by neutralizing antibodies.

3. Additional information

Caution	We recommend determining the optimal pseudovirus volume to use according to your specific experimental conditions.
Pseudovirus	3 rd generation, replication incompetent
Pseudotyping	Ebola virus glycoprotein from the 2014 outbreak in west Africa (GENBANK : <u>KP096420.1</u>)
Glycosylation origin	Human
Reporter protein	Firefly luciferase
Storage	- 80 °C, avoid freeze/thaw cycles
For more information	<u>mathias.mangion@ivanobioscience.com</u> Message object should contain : "#PsV-EBZLU-0100"